Co-Precipitation, Strength and Electrical Resistivity of Cu–26 wt % Ag–0.1 wt % Fe Alloy
نویسندگان
چکیده
Both a Cu-26 wt % Ag (Fe-free) alloy and Cu-26 wt % Ag-0.1 wt % Fe (Fe-doping) alloy were subjected to different heat treatments. We studied the precipitation kinetics of Ag and Cu, microstructure evolution, magnetization, hardness, strength, and electrical resistivity of the two alloys. Fe addition was incapable of changing the precipitation kinetics of Ag and Cu; however, it decreased the size and spacing of rod-shaped Ag precipitates within a Cu matrix, because Fe might affect the elastic strain field and diffusion field, suppressing the nucleation of Ag precipitates. Magnetization curves showed that γ-Fe precipitates were precipitated out of the Cu matrix, along with Ag precipitates in Fe-doping alloy after heat treatments. The yield strength of the Fe-doping alloy was higher than that of the Fe-free alloy, and the maximum increment was about 41.3%. The electrical conductivity in the aged Fe-doping alloy was up to about 67% IACS (International Annealed Copper Standard). Hardness, strength, and electrical resistivity were intensively discussed, based on the microstructural characterization and solute contributions of both alloys. Our results demonstrated that an increasing fraction of nanoscale γ-Fe precipitates and decreasing spacing between Ag precipitates resulted in the increasing strength of the Fe-doping alloy.
منابع مشابه
Production of W-Cu-Ni Alloy and Cu Bimetal by SPS Process and Analysis of Process Parameters
This study aims at investigating changes in microstructure and strength of W alloy and Cu bimetals with varying spark plasma sintering (SPS) temperature and percentage of copper in W-Cu-Ni alloy. After SPS of W (12 wt%)-Cu (14 wt%)-Ni (3 wt%) alloy powder into consolidated discs at 1350 ° C, they were spark plasma sintered to copper discs at various temperatures. Assessment of the interface mic...
متن کاملمقایسه کانسارCu-Ag-Au قلعه زری با دیگر کانسارهای نوع Iron Oxides Cu-Au (IOCG) و ارائه ردهبندی جدید
The Qaleh-Zari specularite- rich Cu-Au-Ag deposit is located 180 Km south of Birjand. Host rocks are mainly Tertiary andesites and andesitic basalts and some Jurassic shales and sandstones. Andesitic rocks from the western region of Qaleh-Zari were dated to 40.5±2 Ma. Four trends of faults and joints are identified in the mine area. The oldest is mineralized. Three major sub-parallel quartz ve...
متن کاملMethanol Steam Reforming Catalyzing over Cu/Zn/Fe Mixed Oxide Catalysts
Methanol steam reforming plays a pivotal role to produce hydrogen for fuel cell systems in a low temperature range. To accomplish higher methanol conversion and lower CO production, the reaction was catalyzed by CuZnFe mixed oxides. Various ratios of Fe and Cu/Zn were coprecipitated in differential method to optimize the CuZnFe structure. The sample containing 45Cu50Zn5Fe (Wt. %) revealed its m...
متن کاملEffect of Deformation-Induced Defects on the Microstructure and Pitting Corrosion Behavior of Al-Ag Alloy
In this study, a wide range of combined ageing treatments and cold work deformations in the Al 4.2 wt% Ag alloy matrix were proposed, aiming to investigate the effect of defects such as precipitates (Ag2Al plates) and dislocations on the mechanical and electrochemical behavior of Al–4.2 wt% Ag alloys. Further reductions of thickness from 10 to 60%, decreases the mean size of Ag2...
متن کاملPrecipitation hardening in a dental low-gold alloy.
Age-hardening characteristics in a dental low-gold alloy composed of 40.0 wt% Au-35.0 wt% Ag-7.9 wt% Pd-7.0 wt% Cu-5.0 wt% In-3.5 wt% Zn-1.5 wt% Sn, were investigated by means of the hardness test, XRD study, SEM observations and EPMA. The following results were obtained. The age-hardening was characterized by a precipitation of Cu-rich alpha2 phase in the a phase. The softening that occurred f...
متن کامل